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ABSTRACT 

In this investigation, a laminated composite shell element of the absolute nodal coordinate 

formulation (ANCF) is developed for application to the modeling of fiber-reinforced rubber 

(FRR) structure of the physics-based ANCF tire model. The complex deformation coupling 

exhibited in fiber-reinforced composite materials can be automatically considered in the shear 

deformable laminated composite shell element using the continuum mechanics approach, and the 

element lockings are systematically eliminated by the assumed natural strain and enhanced strain 

approaches, thereby leading to a locking-free shear deformable ANCF composite shell element. 

Furthermore, various nonlinear material models can be considered for each layer in a way same 

as solid elements. Using the ANCF composite shell element developed, a physics-based ANCF 

tire model is developed by considering the detailed tire geometry and material properties. The 

experimental validation of the tire model is conducted for the load-deflection curve to ensure that 

the fundamental structural tire properties can be correctly captured in the ANCF tire model. 

 


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1. INTRODUCTION 

An accurate modeling of the complex tire geometry and the anisotropic material properties of tire 

structure is essential to the tire performance evaluation including the tire contact pressure and the 

braking/traction and cornering forces. Since a tire consists of layers of plies and steel belts 

embedded in rubber, the tire structure needs to be modeled by cord-rubber composite materials 

and various fiber-reinforced rubber material models are proposed for use in detailed finite 

element tire models. Since Young’s modulus of the steel cord is significantly higher than that of 

the rubber matrix, mechanical property of the fiber-reinforced rubber (FRR) is highly nonlinear 

[1]. In particular, the tire cross-section property is of significant importance in characterizing the 

normal contact pressure distribution. Furthermore, the in-plane shear deformation of the carcass 

contributes to the cornering characteristics of tires. For this reason, high-fidelity finite element 

tire models that account for the tire geometric and material nonlinearities are developed and used 

for the tire performance evaluation [2,3]. However, existing finite element tire models cannot be 

integrated into the vehicle dynamics simulation due to the essential difference in formulations 

and solution procedures used in multibody dynamics and nonlinear finite element codes. This 

prevents an integration of the high-fidelity tire model into the multibody vehicle dynamics 

simulation [4] and, therefore, the structural characteristics of tires and the transient tire dynamics 

are, in general, evaluated using different computational models and different simulation 

approaches. To overcome this fundamental and essential problem in the tire dynamics simulation, 

a tire model based on the flexible multibody dynamics approach [4-6] is developed using the 

absolute nodal coordinate formulation (ANCF [7, 8]). The in-plane ANCF-LuGre tire model 

developed for the transient braking analysis allows for considering the nonlinear coupling 

between the dynamic structural deformation of the tire and its transient tire force in the contact 
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patch using general multibody dynamics computer algorithms [6]. The generalization of the in-

plane ANCF tire model to the three-dimensional model requires the development of the new 

ANCF shell element suited for the tire model, which allows for modeling the nonlinear fiber-

reinforced rubber materials and the accurate three-dimensional stresses under various 

maneuvering scenarios. To this end, the continuum mechanics based shear deformable shell 

element of the absolute nodal coordinate formulation (ANCF) [9] is generalized to a laminated 

composite shell element in this study for application to the modeling of fiber-reinforced rubber 

(FRR) structure of the physics-based ANCF tire model. Furthermore, a physics-based ANCF 

structural tire model is developed using the shear deformable laminated composite shell elements. 

The paper that discusses the development of the ANCF laminated composite shell element and 

the physics-based ANCF structural tire model is organized as follows. In Section 2, the 

kinematics and elastic force formulation of the shear deformable ANCF shell element are 

overviewed and the procedure for eliminating the element lockings is explained. The classical 

lamination theory and the generalization of the ANCF shell element to the laminated composite 

shell element are discussed in Section 3. In Section 4, numerical results and comparison with 

analytical solutions and existing composite shell elements are presented to validate the ANCF 

laminated composite shell element developed in this study. Modeling of the physics-based 

ANCF tire model using the ANCF laminated composite shell element is discussed in Section 5, 

and comparison with measurement results are presented for validation. Summary and 

conclusions drawn from this study are presented in Section 6. 



 UNCLASSIFIED: Distribution Statement A. Approved for public release. #26428 

 

3  

This material is declared a work of the U.S. Government and is not subject to  

copyright protection in the United States. Approved for public release; distribution is unlimited. 

2. CONTINUUM MECHANICS BASED SHEAR DEFORMABLE ANCF SHELL 

ELEMENT 

2.1  Kinematics of ANCF Shell Element 

As shown in Fig. 1, the global position vector i
r  of a material point T[ ]i i i ix y zx  in shell 

element i is defined as [9] 

( , ) ( , )
i

i i i i i i i

m i
x y z x y

z


 



r
r r                                                     (1) 

where ( , )i i i

m x yr  is the global position vector in the middle surface and ( , )i i i ix y z r is the 

transverse gradient vector used to describe the orientation and deformation of the infinitesimal 

volume in the element. Using the bi-linear polynomials, the position vector in the middle surface 

and the transverse gradient vector are approximated as follows: 

( , ) ( , ) , ( , ) ( , )
i

i i i i i i i i i i i i i

m m p m gi
x y x y x y x y

z


 



r
r S e S e                          (2) 

where 1 2 3 4

i i i i i

m S S S S   S I I I I  and 

           1 2 3 4

1 1 1 1
1 1 , 1 1 , 1 1 , 1 1

4 4 4 4

i i i i i i i i i i i iS S S S                     (3) 

where 2 /i i ix   and 2 /i i iy w  . i  and iw are lengths along the element ix  and iy  axes, 

respectively. In Eq. 2, the vectors i

pe  and i

ge  represent the element nodal coordinates associated 

with the global position vector in the middle surface and the transverse gradient vector. That is, 

for node k of element i, one has 
ik ik
p e r  and 

ik ik i
g z  e r . 

In the continuum mechanics approach, the elastic forces of the shell element are evaluated as a 

continuum volume and the Green-Lagrange strain tensor E  at an arbitrary material point in 
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element i is defined as follows: 

 
1

( )
2

i i T i E F F I                                                             (4) 

where i
F  is the global position vector gradient tensor. The preceding equation can be expressed 

in terms of the covariant strain tensor i
E  as 

1( ) ( )i i T i i E J E J                                                             (5) 

where i i i  J X x  and i
X  represents the global position vector of element i at an arbitrary 

reference configuration. The covariant strain tensor is defined as 

 
1

( ) ( )
2

i i T i i T i E J J J J                                                    (6) 

where i i i  J r x . Using Eq. 5, the strain vector [ ]i i i i i i i T

xx yy xy zz xz yz     ε  is 

defined as 

( )i i T iε T ε                                                                      (7) 

where i
ε  is the covariant strain vector obtained by Eq. 6, and the constant transformation matrix 

i
T  is as given in literature [9].  

2.2  Generalized Elastic Forces 

In the continuum mechanics based shear deformable ANCF shell element, element lockings 

occur due to the use of low-order polynomials, thereby resulting in overly stiff bending behavior. 

The locking in the bi-linear shear deformable ANCF shell element includes the transverse shear 

locking; Poisson’s thickness locking; curvature thickness locking; in-plane shear locking [9, 10]. 

These lockings are systematically alleviated by applying the assumed natural strain method [11, 

12] and the enhanced assumed strain method [13, 14]. The enhanced strain field for the 

continuum mechanics-based shear deformable ANCF shell element can then be defined as 
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follows [9]: 

ˆ T EAS ε T ε ε                                                         (8) 

where the covariant transverse normal and shear strains are evaluated by the assumed strain 

approach, while the other covariant strains are evaluated as compatible strains obtained directly 

from the assumed global displacement field. This leads to the following covariant strain vector: 

T
ANS ANS ANS

xx yy xy zz xz yz        ε                                      (9) 

The enhanced assumed strain vector 0 0
T

EAS EAS EAS EAS EAS

xx yy xy zz      ε  in Eq. 8 is 

defined as [13, 14] 

0 T

0 ( )
( )

EAS 
J

ε T N ξ α
J ξ

                                               (10) 

where )(ξJ  and 0J  are the global position vector gradient matrices at the reference 

configuration evaluated at the Gaussian integration point ξ  and at the center of element ( 0ξ  ), 

respectively. ξ  is a vector of the element coordinates in the parametric domain and 0T  is the 

constant transformation matrix evaluated at the center of element. The matrix ( )N ξ  defines 

polynomials for the enhancement of the strain field in the parametric domain and α  is a vector of 

internal parameters associated with the interpolating polynomials of the enhanced strain field. 

The generalized elastic forces of the shell element are obtained as a continuum solid using the 

virtual work as follows: 

0
0

ˆ( )
i

T
i i i

i i

s i iV

W
dV

  
   

  


ε ε
Q

e ε
                                                   (11) 

where 0

idV  is the infinitesimal volume at the reference configuration of element i, and W  is an 

elastic energy density function. The continuum mechanics based shear deformable ANCF shell 
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element allows for considering general hyperelasticity material models in a way same as existing 

solid elements.  

3. LAMINATED COMPOSITE SHELL FORMULATION 

In fiber-reinforced composite materials that are widely used in many engineering applications, 

laminae having different fiber angles are bonded together to produce desired material properties. 

Since many laminae are stacked at different fiber angles, the complex deformation coupling 

between the extension, shearing, bending and twisting occurs, and such a deformation coupling 

characterizes the mechanical behavior of fiber-reinforced composite materials [15]. In the first 

part of this section, the macro-mechanical behavior of fiber-reinforced composite materials is 

overviewed using the classical lamination theory. 

3.1  Classical Lamination Theory 

In the Kirchhoff plate theory, the plane stress is assumed and the in-plane strains of a plate 

[ ]T

p xx yy xy  ε  are defined as 

0

p p z ε ε κ                                                              (12) 

where 0 0 0 0[ ]T

p xx yy xy  ε  is a vector of the in-plane strains in the middle plane, and 

[ ]T

x y xy  κ  is a curvature vector associated with bending and twisting. Using a linear 

orthotropic constitutive law for a fiber-reinforced plate, the in-plane stress vector is related to its 

strain vector by p p pσ C ε , and the material moduli is given as [15] 

1 T

p p

 C R C R                                                         (13) 

In the preceding equation, the transformation matrix R  is a function of the fiber angle   that 

defines the orientation of the fiber coordinate system o-12 with respect to the material frame o-xy 



 UNCLASSIFIED: Distribution Statement A. Approved for public release. #26428 

 

7  

This material is declared a work of the U.S. Government and is not subject to  

copyright protection in the United States. Approved for public release; distribution is unlimited. 

of the plate as shown in Fig. 1. This matrix is defined by 

2 2

2 2

cos sin sin 2

sin cos sin 2

sin 2 sin 2 cos 2

  

  

  

 
 

  
  

R                                              (14) 

and pC  is the material moduli of an orthotropic material in the fiber coordinate system as 

 

1111 1122

1122 2222

1212

0

0

0 0

p

C C

C C

C

 
 

  
 
 

C                                                     (15) 

where 1111

1 12 21(1 )C E    , 2222

2 12 21(1 )C E    , 1122

21 1 12 21(1 )C E    , and 1212

12C G . 

While the coupling terms between the normal and shear strains in the fiber coordinate system are 

zero as observed in Eq. 15, the extension and shear coupling occurs for the stress and strain field 

defined in the material frame and the coupling terms in the material moduli matrix pC  of Eq. 13 

are not zero. That is, a plate subjected to a uniaxial load produces in-plane shear deformation due 

to the extension and shear coupling [15]. Using the linear constitutive law for an orthotropic 

material, the in-plane stresses of a lamina are defined as 

0

p p p pz σ C ε C κ                                                         (16) 

The force and moment resultants of a fiber-reinforced composite consisting of N orthotropic 

laminae can then be defined as 

1 1

0

1 1

k k

k k

N Nz z
k k

p p p
z z

k k

dz z dz
  

   N C ε C κ                                      (17) 

and  

   
1 1

0 2

1 1

k k

k k

N Nz z
k k

p p p
z z

k k

z dz z dz
  

   M C ε C κ                               (18) 

where [ ]T

x y xyN N NN , [ ]T

x y xyM M MM , 
k

pC  is the material moduli matrix of the k-
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th layer, and 
kz  is the thickness coordinate at the upper surface of the k-th layer. It is important to 

notice here that the force and moment resultants are defined as forces and moments per unit 

length [15]. Since the strain and curvature are not function of the thickness coordinate z in the 

Kirchhoff plate theory, Eqs. 17 and 18 are written in a matrix form as [15] 

0

p
    

     
     

N A B ε

M B D κ
                                                     (19) 

where 1

1

( ) ( )
N

k

ij p ij k k

k

A C z z 



  , 2 2

1

1

( ) ( ) / 2
N

k

ij p ij k k

k

B C z z 



  , and 3 3

1

1

( ) ( ) / 3
N

k

ij p ij k k

k

D C z z 



  . 

The presence of the matrix B implies the extension and bending/twisting coupling of a laminate. 

However, if each lamina above the mid-plane is identical to that below the mid-plane in both 

geometry and material properties (i.e., the laminate is mid-plane symmetric), the matrix B 

becomes identically zero (i.e., 0ijB  ) and the extension and bending/twisting coupling vanishes. 

It is important to notice here that the extension and shear coupling still exists. Another important 

case is a balanced laminate, in which a laminate consists of a pair of laminae that have opposite 

fiber angles (   and  ) above and below the mid-plane, regardless of the stacking sequence. 

This eliminates the extension and shear coupling. That is, coupling terms of in-plane normal and 

in-plane shear strains in matrix A are identically zero. For a two-layer laminate with the same 

layer thickness and opposite fiber angle ( /   ) about the mid-plane, the extension and shear 

coupling vanishes, but the extension and twisting coupling in B matrix exists. This causes 

twisting deformation of a laminated composite plate subjected to a uniaxial tensile loading [15]. 

The presence of such a complex coupling is discussed using the ANCF laminated composite 

shell element in Section 4. 
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3.2  Generalization to Shear Deformable ANCF Composite Shell Element 

As discussed in Section 2, the continuum mechanics based ANCF shell element is formulated as 

a continuum solid that accounts for the three-dimensional stress state, thus the complex 

deformation coupling exhibited in laminates can be automatically considered without special 

elastic force formulations. That is, the generalized elastic force of the laminated composite shell 

element that consists of N layers can be defined as follows: 

0
0

1

ˆ( )
ik

T
ik ik ikN

i ik

s i ikV
k

W
dV



  
   

  


ε ε
Q

e ε
                                             (20) 

In the preceding equation, the integration interval for the k-th layer in the thickness direction is 

from 1kz   to kz . In other words, the element generalized elastic forces are evaluated layer by 

layer and the resulting generalized elastic forces of each layer are simply added together to 

define the elastic force vector of the laminated composite shell. It is important to notice here that 

there is no restriction in material models considered in each lamina, despite the fact the 

orthotropic material law is the most popular material model used for reinforced composite 

materials. Two Gaussian integration points are used along the thickness when the elastic forces 

of each layer are evaluated. 

Orthotropic Saint-Venant-Kirchhoff Material Model     For an orthotropic Saint-Venant-

Kirchhoff material, the material moduli 
2 /ijkl

ij klC W       of a fiber-reinforced lamina in the 

material frame is defined as [16] 

( )( )( )( )ijkl i j k l abcd

a b c dC C    b a b a b a b a                                         (21) 

where 1 1 2 3( ) [ ]i  J b b b  and abcdC  is the tangent material moduli defined using 9 material 

parameters in the fiber coordinate system 1 2 3[ ]a a a  as shown in Fig. 1, where the direction of 
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fiber is defined along the coordinate 1. The material moduli abcdC  in the fiber coordinate system 

are given as follows [16]: 

1111 1122 1133

1122 2222 2233

1212

1133 2233 3333

2323

1313

0 0 0

0 0 0

0 0 0 0 0
[ ]

0 0 0

0 0 0 0 0

0 0 0 0 0

ijkl

C C C

C C C

C
C

C C C

C

C

 
 
 
 

  
 
 
 
  

                                (22) 

where  

1111 2222 3333

1 23 32 2 13 31 3 12 21

1122 1133 2233

1 21 31 23 3 13 12 23 2 32 12 31

1212 2323 1313

12 23 13

(1 ) / (1 ) / (1 ) /

( ) / ( ) / ( ) /

C E C E C E

C E C E C E

C G C G C G

     

        

        

        

  

    (23) 

and 12 21 23 32 31 13 21 32 131 2              .  

Mooney-Rivlin Material Model     For modeling incompressible materials such as rubbers, 

Mooney-Rivlin material model is widely used. The energy density function is defined as [17] 

2

1 1 2 2( 3) ( 3) ( 1)
2

K
W C I C I J                                            (24) 

where 1C  and 2C  are material constants, 1 3

1 1 3/ ( )I I I , 2 3

2 2 3/ ( )I I I  and 1 2

3( )J I , where I1, 

I2 and I3 are invariants of right Cauchy-Green tensor [17]. K  is a bulk modulus. The second 

Piola–Kirchhoff stress tensor S is obtained by differentiating the energy density function W with 

respect to Green-Lagrange strain tensor E as 

   
1 3 2 31 1 1

1 3 1 2 3 1 2

1 2
2 2 (J 1)

3 3

W
C I I C I I I KJ

       
          
    

S I C I C C C
E

      (25) 

Equations of Motion    Using the principle of virtual work in dynamics, the equations of motion 

of the shear deformable laminated composite shell element i can be expressed as 

( , ) ( , , )i i i i i i i i

s e t M e Q e α Q e e                                                (26) 
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where vectors i

sQ  and i

eQ  are, respectively, the element elastic and external force vectors; and 

the matrix i
M is the constant element mass matrix defined by 

0

0 0

1

( )
ik

N
i ik i T i ik

V
k

dV


M S S                               (27) 

where 0
ik  is the material density of k-th layer at the reference configuration. The internal 

parameters iα  introduced for the enhanced assumed strains are determined by solving the 

following equations [13, 14]: 

0
0

ˆ( )
i

T
EAS i i

i

i iV

W
dV

  
 

  


ε ε
0

α ε
                                             (28) 

It is important to notice here that the preceding equations can be solved at element level for the 

unknown internal parameters iα  using the procedure presented in the literature [9]. 

4. NUMERICAL EXAMPLES 

4.1  Extension and In-Plane Shear Coupling of Fiber-Reinforced Plate Subjected to 

Uniaxial Tensile Load 

To discuss the extension and in-plane shear coupling of a fiber-reinforced material, a uniaxial 

tension test as shown in Fig 2(a) is considered using the shear deformable ANCF shell element. 

The length, width and thickness of the plate are 2.0 m, 1.0 m, and 0.01 m, respectively. Young’s 

modulus of the fiber and those of the matrix are, respectively, assumed to be 111.8 10xE    Pa 

and 71.3333 10y zE E    Pa. The shear modulus of rigidity and Poisson’s ratio are assumed to 

be 6G G 3.33333 10 Paxy xz yzG      and 0.4xy xz yz     , respectively. The tensile 

distributed uniaxial load of 5000 N/m is applied in the X direction. The in-plane shear strain of 
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the plate is presented in Fig. 3 as a function of the fiber angle  . In this figure, the in-plane shear 

strain obtained by the ANCF composite shell element is compared with the analytical solution 

given by [1] 

2 2

12

1 2 1 12

2cos sin 1 1
sin 2 cos 2

2
xy x

E E E G

 
   

  
      

  
                           (29) 

It is observed from the preceding equation that the change in the shear strain is nonlinear in the 

fiber angle  . The sign of the shear strain changes at 54.7   degrees [1] as shown by the 

magnified deformed shapes at 20  , 54.7 and 70 degrees in Fig. 3. The results obtained by the 

ANCF shell element agree well with the analytical solution based on the assumption of 

Kirchhoff plate theory with infinitesimal deformation.  Furthermore, using Eq. 29, the inflection 

points of the in-plane shear strain are obtained at 25.5   and 71.3 degrees, and they are also 

well predicted using the ANCF composite shell element.  

4.2  Warpage of Two-Layer Laminated Composite Plate Subjected to Uniaxial Tensile 

Load 

To validate the ANCF laminated composite shell element, a uniaxial tensile test of a two-layer 

laminate at /    fiber angles is considered as shown in Fig. 2 (b) [15]. The length, width and 

thickness of the plate are same as the previous example in Section 4.1. The thicknesses of each 

layer is 0.005 m. The fiber angles of the upper and lower layers are same in magnitude, but 

opposite in direction as shown in Fig. 2 (b). The material properties of each layer are also same 

as the previous example in Section 4.1. The tensile distributed uniaxial load of 500 N/m is 

applied in the X direction. As discussed in Section 3.1, the extension and bending/twisting 

coupling described by B matrix in Eq. 19 are not zero in this laminate, and it causes the warpage 
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(twisting) under the uniaxial tensile loading [15]. The extension and shear coupling exists in each 

lamina. However, shear deformation of the upper and lower layers caused by the uniaxial tensile 

load are same in magnitude, but opposite in direction. Thus, the shear deformations of both 

layers are canceled out and no in-plane shearing occurs in the laminated composite. That is, the 

extension and shear coupling term of A matrix of the laminate in Eq. 19 becomes identically zero 

in this problem.  

To demonstrate this fundamental coupling behavior of the laminated composite material using 

the ANCF laminated composite shell element, the twisting angle and the in-plane shear strain of 

the two-layer laminated composite plate are presented in Fig. 4 as a function of the fiber angle  . 

In this figure, results obtained by the ANCF laminated composite shell element are compared 

with the analytical model based on the classical lamination theory discussed in Section 3.1. In 

the analytical model, the warpage is defined by [15] 

 2 21

2
x y xyw x y xy                                                      (30) 

where the curvature vector [ ]T

x y xy  κ  is determined by solving the following equation: 

10

p


     

     
    

A B Nε

B D Mκ
                                                     (31) 

for [ 0 0]T

xNN  and [0 0 0]TM . It is observed from Fig. 4 that the twisting angles 

agree well with those based on the classical lamination theory, and the warpage developed by the 

uniaxial tensile load applied to the two-layer laminated composite plate is well predicted by the 

ANCF laminated composite shell element developed in this study. The sign of the twisting angle 

of the composite plate changes at the fiber angle of 54.7   degrees [1], and this important fiber 

angle is also correctly predicted with the ANCF laminated composite shell element. Furthermore, 
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zero in-plane shear strain is ensured in the results obtained by the ANCF laminated composite 

shell element regardless of the fiber angle, and this result agrees with that of the analytical model 

based on the classical lamination theory. 

4.3  Cantilevered Two-Layer Composite Shell Subjected to a Point Load 

To demonstrate the accuracy of the ANCF composite shell element for large deformation 

problem of initially curved shell structures, a cantilevered quarter cylinder modeled by /    

two-layer composite shell is considered as shown in Fig. 5. The fiber angle of each layer is 

assumed to be 20 . The radius of curvature is assumed to be 1.0 m. The width and height are 

assumed to be 1.0 m and 0.01 m (i.e., 0.005 m thickness for each layer). Young’s modulus of the 

fiber and those of the matrix are, respectively, assumed to be 82.0 10xE    Pa and 

81.0 10y zE E    Pa. The shear modus of rigidity and Poisson’s ratio are assumed to be 

7G G 3.84615 10xy xz yzG      Pa and 0.3xy xz yz     , respectively. The vertical point load 

of 10 N is applied to the corner of the shell as shown in Fig. 5. The deformed shape at the static 

equilibrium state is shown in Fig. 5, in which the large deformation is exhibited. The static 

deflections of the load application point obtained by the ANCF laminated composite shell 

element are compared with those of the shear deformable composite shell element of ANSYS 

(SHELL181) [17] in Table 1 for different number of elements. It is demonstrated in this Table 

that good agreements in solution are obtained between the shear deformable laminated composite 

shell elements obtained by the absolute nodal coordinate formulation and the MITC shell 

formulation [17] implemented in ANSYS. The numerical convergence of the finite element 

solutions are presented in Fig.  6 for errors defined by the deviation from the reference solution, 

where the reference solution of -0.80517 m is obtained by 100 100  elements using the ANSYS 
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SHELL181 composite shell element. It is observed from this figure that the ideal linear rate of 

convergence is ensured in both models for the large deformation problem and it indicates that 

element lockings are properly eliminated in the ANCF laminated composite shell element 

developed in this study. 

4.4  Natural Frequencies of Laminated Composite Plate 

The eigenfrequency analysis of the /    two-layer composite plate is considered in this 

example. The fiber angle of each layer is assumed to be 20 . A free boundary condition is 

assumed. The length, width and thickness of the plate are 1.0 m, 1.0 m, and 0.01 m (i.e., 0.005 m 

thickness for each layer), respectively.  Young’s modulus of the fiber and those of the matrix are, 

respectively, assumed to be 76.0 10xE    Pa and 73.0 10y zE E    Pa. The shear modus of 

rigidity and Poisson’s ratio are assumed to be 7G G 1.1538 10xy xz yzG      Pa and 

0.3xy xz yz     , respectively. The material density is assumed to be 500 kg/m
3
. The first ten 

eigenfrequencies and their mode shapes are shown in Table 2 and Fig. 7, respectively. The 

eignfrequencies are compared with the reference solutions obtained by the 100 100  elements 

using the ANSYS SHELL181 composite shell element. The eigenfrequencies are also well 

predicted with the ANCF laminated composite shell element. 

4.5  Quarter Cylinder Pendulum with Laminated Composite Material 

In the last numerical example, the nonlinear dynamic analysis of the /    two-layer laminated 

composite shell structure (a quarter cylinder pendulum) is discussed as shown in Fig. 8. The 

radius of curvature is assumed to be 1.0 m. The fiber angle of each layer is assumed to be 20  

and the material property of each layer is same as that of the previous example in Section 4.4. 
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One corner of the composite quarter cylinder is connected to the ground by a spherical joint. The 

deformed shapes under the effect of gravity are shown in Fig. 8, in which large deformation is 

observed. The global X, Y and Z positions at the corner point shown by a red circle in Fig. 8 are 

presented in Figs. 9, 10 and 11, respectively. Despite the highly nonlinear dynamics problem 

involving the large deformation of composite materials, the numerical solution obtained by 

10 10  elements are close to those of 30 30  elements. 

5. APPLICATION TO PHYSICS-BASED ANCF TIRE MODEL 

In the numerical examples in the preceding section, the fundamental element performance of the 

shear deformable ANCF laminated composite shell element developed in this study is 

demonstrated. Use of the element developed allows for predicting the complex deformation 

coupling between the extension, shearing, bending and twisting that characterizes the mechanical 

behavior of fiber-reinforced composite materials. This is an important modeling requirement for 

developing the physics-based tire model, and use of the absolute nodal coordinate formulation in 

modeling the tire structure allows for the integration of the flexible tire model into the general 

multibody dynamics computer algorithms for vehicle dynamics simulation. For this reason, in 

this section, a modeling procedure of the physics-based ANCF tire model using the ANCF 

laminated composite shell element is discussed, and the fundamental structural characteristics of 

the ANCF tire model are validated by comparison with the measurement results of a tire. 

A tire has a complex structure that consists of layers of plies and steel belts that are embedded in 

rubber, thus an accurate modeling of the complex tire geometry and the anisotropic material 

properties is essential to the tire performance evaluation including the tire contact pressure and 

the braking/traction and cornering forces. While the in-plane tire belt deformation can be 

modeled by an equivalent material model [5,6], such a simplified material model cannot be used 
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for predicting the overall tire structural deformation in the three-dimensional analysis. This is 

attributed to the fact that the tire section property in both geometry and material is of crucial 

importance in characterizing the contact pressure distribution. This necessitates various fiber-

reinforced rubber material models that can be integrated into high-fidelity finite element tire 

models [2,3]. However, despite the fact that accurate solutions can be obtained using existing 

finite element tire models, difficulties arise when they are integrated into the vehicle dynamics 

simulation due to the essential difference in formulations and solution procedures used in 

multibody dynamics and nonlinear finite element codes. This prevents an integration of the high-

fidelity tire model into the multibody vehicle dynamics simulation. 

In order to develop a physics-based absolute nodal coordinate formulation tire model, the tire 

cross section geometry is imported from the tire cut section and data points are interpolated by a 

cubic smoothing spline to extract the nodal position and slope coordinates. As shown in Fig. 12, 

the tire cross-section is divided into the tread, sidewall, and bead sections. The number of layers, 

cord angles of layers, material properties are provided in each section to create the tire model 

data as shown in Fig. 13. The tread section consists of a carcass ply, two steel belts, a belt cover, 

and tread blocks. The carcass ply and steel belt are modeled as an orthotropic material with 

polyester and steel cords embedded in rubber, respectively. A rubber layer is considered between 

the upper and lower steel belts and between the carcass ply and the lower steel belt. The sidewall 

section is modeled by two carcass plies and a rubber that lies in between. The bead section is 

modeled by two carcass plies, a steel belt, and a rubber as shown in Fig. 13. Having determined 

the cross-section property, the three-dimensional tire geometry is generated by rotating the tire 

section model, and the nodal position and slope coordinates of the ANCF tire model are created 

as summarized in Fig. 12. 
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The tire considered in the numerical example is 215/45R17. The air pressure of 220 kPa is 

considered by the normal distributed load applied to the inner surface of the tire. The penalty 

approach is used for modeling the normal contact force at each node in contact. The load-

deflection curve is important for characterizing the fundamental structural properties of tires. The 

lateral and vertical deflections of the ANCF tire model shown in Fig. 14 are compared with the 

measurement results in Figs. 15 and 16. It is observed from these figures that the local tire 

deflections are well predicated in both lateral and vertical directions for the various wheel loads. 

Furthermore, the lengths of the contact patch in the longitudinal and lateral directions also agree 

well with those of the measurement results as shown in Fig. 17 and 18.  

6. SUMMARY AND CONCLUSIONS 

In this study, a continuum mechanics based shear deformable shell element of the absolute nodal 

coordinate formulation (ANCF) is generalized to a laminated composite shell element for 

application to the modeling of fiber-reinforced rubber (FRR) structure of the physics-based 

ANCF tire model. It is shown that the complex deformation coupling exhibited in fiber-

reinforced composite materials can be automatically considered in the shear deformable 

laminated composite shell element using the continuum mechanics approach. Furthermore, the 

element lockings are systematically eliminated by the assumed natural strain and enhanced strain 

approaches, thereby leading to a locking-free shear deformation ANCF laminated composite 

shell element. The several benchmark problems are used to validate the ANCF laminated 

composite shell element with particular emphasis on the deformation coupling exhibited in 

composite materials. The numerical results are in good agreement with those predicated by the 

analytical model based on the classical lamination theory and the laminated solid shell element in 

ANSYS. Furthermore, using the ANCF laminated composite shell element developed, a physics-
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based ANCF tire model is developed by considering the detailed tire geometry and anisotropic 

material properties. The fiber-reinforced rubber is considered for modeling the carcass plies and 

steel belts using the multi-layered laminated composite shell elements. The load-deflection 

curves as well as the contact patch sizes predicted by the physics-based ANCF tire model are in 

good agreement with the measurement results. 
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Table 1. Static deflection of cantilevered two-layer composite shell subjected to point load (m) 

 

Number of 

elements 

ANCF 

composite shell 

ANSYS 

composite shell 

(SHELL181) 

4 4   -0.77157 -0.78262 

8 8  -0.79931 -0.79786 

16 16  -0.80310 -0.80220 

32 32  -0.80414 -0.80619 

50 50  -0.80452 -0.80473 

64 64  -0.80469 -0.80493 
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Table 2. First ten eigenfrequencies of the ANCF laminated composite shell (Hz) 

 

ANCF 

composite 

shell 

2 2  

ANCF 

composite 

shell 

4 4  

ANCF 

composite 

shell 

8 8  

ANCF 

composite 

shell 

16 16  

ANCF 

composite 

shell 

32 32  

ANSYS 

composite 

shell 

(SHELL181) 

100 100  

1.8168 1.7705 1.7385 1.7291 1.7295 1.7175 

2.9444 2.6214 2.4887 2.4518 2.4296 2.4424 

4.3411 3.7085 3.4579 3.3853 3.3642 3.3700 

4.8487 4.6450 4.4097 4.3355 4.3088 4.2951 

5.4240 5.0939 4.8413 4.7605 4.7412 4.7220 

9.1235 9.3139 7.7790 7.2886 7.1604 7.1146 

116.4075 9.7130 8.5528 8.3152 8.2496 8.2005 

127.6218 10.7920 9.2868 8.8343 8.7120 8.6442 

133.0542 12.3383 9.8813 9.2463 9.0973 9.0559 

141.4632 14.1086 11.5408 10.8417 10.6750 10.6080 
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Figure 1. Kinematics of shear deformable ANCF laminated composite shell element 
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Figure 2. Uniaxial tensile test models 
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Figure 3. In-plane shear strain of one-layer orthotropic plate  
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Figure 4. Twisting angle and in-plane shear strain of two-layer laminated composite plate 

subjected to uniaxial tensile load 
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Figure 5. Deformed shape of cantilevered two-layer composite shell subjected to point load 
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Figure 6. Numerical convergence of finite element solutions  
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Figure 7. Vibration mode shapes of two-layer laminated composite shell 
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Figure 8. Deformed shapes 

 



 UNCLASSIFIED: Distribution Statement A. Approved for public release. #26428 

 

34  

This material is declared a work of the U.S. Government and is not subject to  

copyright protection in the United States. Approved for public release; distribution is unlimited. 

 

 

 

 

 

Figure 9. Global X-position at the tip point 
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Figure 10. Global Y-position at the tip point 
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Figure 11. Global Z-position at the tip point 
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Figure 12. ANCF tire model creation procedure 
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Figure 13. Physics-based ANCF tire model using multi-layered laminated composite shell 

element 
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Figure 14. Deformed shape of tire cross section 
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Figure 15. Lateral deflection of tire for various wheel loads 
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Figure 16. Vertical deflection of tire for various wheel loads 
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Figure 17. Longitudinal contact patch length for various wheel loads 
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Figure 18. Lateral contact patch length for various wheel loads 

 


